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ERC Grant FUN-SP (2011-2016)

A Functional Framework for Sparse, Non-Gaussian Signal Processing and Bioimaging

Space-domain description Fourier characterization = Generalization
- d ) :
1. Derivative operator D= i Jw Diff. operator
x
2. Discrete derivative Dys(z) = s(x) — s(x — 1) 1—e ¥ Num. analysis
3. Green function u(z) = Do} (2) ]% + 7o (w) Distribution theory
4. B-spline basis ¢(z) = rect(z — 3) = Dgu(x) (1_]‘?(;]“) = %d(—(:’)) Spline theory
o (iecew _ A(&*)=A(1) -
5. Spline (piecewise constant)  s(x) = by + > .., alklu(z — k) e Spline theory
. d . . l—edw 2 .
6. Wavelet basis (Haar) @) = @) with =prp ju ( e ) This grant: WP 2
i
7. Gaussian process Brownian motion:  Ls(z) =w(z) S(w) ~ ﬁ Classical theory
8. Sparse process Compound Poisson process S(w) ~ ﬁ This grant: WP 2
9. Regularization functional TV (s) = ||[Ds||z, (») N/A This grant: WP 2
10. Key points/singularities  {xj, : |g(zk)| > T,¢'(zx) = 0} N/A This grant: WP 2

with g(z) = D(¢ * s)(z)

ERC Grant GlobalBiolm (2016-2020)

Global integrative framework for Computational Bio-Imaging

Continuous-domain formulation: Simplified picture in 1D

Signal s € X C §'(R) (native space)
Linear measurement operator v : s —y = (y1,- - ,ym) = V(s) v:-X o RM

from continuum to discrete (finite dimensional)

m Tikhonov (or L») regularization

STik = arg Sfélql_{lljﬂy - V(S)”%"‘f‘HDSH%%
data C()?rﬂstency regulr;irzation

m Total-variation (or sparsity-promoting) regularization

sy =arg min [ly - v(s)ll3 + ADs|la
data consistency total variation




m Optimum (Bayesian) statistical reconstrution: MMSE

Measurement model: y = v(s) + n € RM

e signal s € §’(R): realization of a stochastic process with probability measure %

e discrete noise n: i.i.d. zero-mean Gaussian with variance o2

= Posterior probability density function: p(s(zo)|y) forany zp € R

sMMsE(Zoly) = E{s(zoly)} = /RSP(S\Y)dS

Remarkable property:

When s is a Gaussian stochastic process: perfect equivalence with Tikhonov/
smoothing spline reconstruction

Linear algorithms 5 Nonlinear algorithms
regulariza'tion functional
Gaussian process —9 : L],
Ls=w : description by
\ ' — keypoints(singularities)
/[ differential
cardinal spllne SJEEIELel sparse stochastic
s(z) = k) 5 l process
k I
_‘—|_|—|J— wavelet-like basis _I—l—l—
=L
reproducing kernel : sparse reconstruction

Hilbert space

compressed sensing

machine learning




Personal research project

Choose your operator (or class of operators) and
go through the whole construction process;
I.e., specify

- Null space

- Green’s function

- B-spline

- Stabilized inverse operator(s)

- Reproducing kernel

- Native space

- Wavelet basis

- corresponding stochastic processes
sparse vs. Gaussian

- representer theorem(s)

- optimal (MMSE) interpolator

Symbolic/numerical computation using Mathematica

Calculation of Green’s functions

FourierTransform[HeavisideTheta[x], x, w, FourierParameters -> {1, -1}]
j .

- —+nDiracDeltalw]
w

1

InverseFour'ierTransform[ , W, X, FourierParameters -> {1, —1}]

(Tw)
Sign[x]
2

InverseFour-ierTransform[ s w, X, FourierParameters -> {1, —1}]

(Iw)?

1
—x Sign[x]
2




Derivative operator

d
L=D=—
dx
m Null space

Np = span{p1}, pi(z) =1

Biorthogonal system: {¢1,p1} = {9, 1}

Projection operator:  Projx. {f} = (¢1, f)p1 = f(0)

hypothesis: f : R — R must be continuous

m Green’s function(s)
u(x) = 14 (x): Heaviside function

D{u}(x) = 6(x): Dirac impulse

Canonical solution: pp(z) = F~'{;,} = 3sign()

Derivative operator: B-spline

Derivative Df(x) = )

Finite difference operator

Daf(z) = f(z) — f(z — 1)
= (8 *Df)(x)

B-spline of degree 0
63(:17) = DygD 15(x) = Dyl ()
!

1—e v

B (w) =

jw
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Derivative operator: Native space (Sobolev)

Lebesgue space of finite-energy functions:

L®) = (FR-R st 2 ([ |f(w)|2dw)1/2<oo}

m Tikhonov regularization

Hp={fR—>R st |Df|3, <oc}

Hilbert space equipped with inner product:  (f, g)p = (Df,Dg) + f(0)g(0)

Generalization:  (f,g)p = (Df,Dg) + (¢1, f){¢1.9)
subject to (¢, 1) = 1 (biorthogonality)
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Stabilized inverse operator

Motivation: Unstable differential equation

Ds =w = s(z) =D Huw}(z) = (uxw)(z) = /_ﬂﬂ w(r)dr ?2??

Problem: D! (integrator) is unstable on Hp (Native space)

m Introduction of suitable boundary condition(s)
Ds=w st (¢1,5) =5s(0)=0

Solution: s(x):D(;ll{w}(:n):/g¢1(x,y)w(y)dy :/ w(T)dr
R 0
Schwartz kernel (generalized impulse response) of inverse operator :

96, (2,y) = pp(r —y) — p1(x)q1(y)
with ¢1(y) = (¢1,pp(- — ¥)) = pp(—Y)

(see Theorem XXX, RKHS notes)
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Synthesis of (non-uniform) splines

Take w to be a series of Dirac impulses (innovation):

w = Z ard(- — xk) (simplifiying assumption z;, > 0)
k
m Formal solution of differential equation
Ds=w st (¢1,s) =5(0)=0b
Solution:  s(z) = by + Dy {w}(z) = by + /Rggbl(x,y)w(y)dy = by + /Uw w(r)dr

= s(x) = by + Z apu(z —z) T
k

all I

y g

V&
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Synthesis of Gaussian process

Take w to be a Gaussian white noise process

m Solution of stochastic differential equation

Ds=w st (¢1,8)=35(0)=0

Solution:  s(z) = D¢_>11 {w}(z) = /Rgd,l(x,y)w(y)dy = /0%’ w(T)dr

Yields Brownian motion (Wiener in 1923)

T e
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Autocorrelation / reproducing kernel

Brownian motion: s = D '{w} where w is a white Gaussian noise

m Autocorrelation function

as(z,y) = B{s(x)s(y)} = E{D {w}(2)Dy {w}(y)}

m Functional equivalence

as : R x R — R is the reproducing kernel of the Hilbert space (RKHS)

Hp,g, = {f € Hp : (¢, f) =0}
:{f:Dglw:wELg(R)}

= as(z,y) = hp(z,y) = 3(Jz| +|y| — |z — y])
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L> representer theorem  (schoenberg 1964, Kimeldorf-Wahba 1971)
m Variational interpolation problem (smoothing splines)

(P2) arg mm (Z [Ym — f(@m)]? +>‘||Df||L2>

Convex loss function: F': RM x RM — R Sample values: f = (f(z1),..., f(zm))
(P2) arg }niﬁ (F(y, f) + AIDfI7,) (Schélkopf-Smola 2001)
€

1
Green’s function of D*D = —D?:  pp.p(z) = F* {_} (z) = _%m

Representer theorem (theory of RKHS)
The generic parametric form of the solution of (P2’) is
M

F@)=b1+ ) am|z — 2
m=1

Supports the theory of SVM, kernel methods, etc.
16




Other examples of operators
See chapters 5 and 6
m One-dimensional operators

- Pure derivatives: D™ <2 (jw)™

- Ordinary differential operators: L = Po, = Po, -+ Pay
with = (g, ..., ay) € CY and P, =D — o, 1d

- Fractional derivatives: 07 PN (jw) %’LT(—jw)%_T

m Multi-dimensional operators

- Separable operators: L(wy, ..., wq) = [[1—; Palw:)

- Fractional Laplacian: (—A)? RN ||w]|”

17

L=(-A)Y2




Sparse encounters
(Anza-Borrego desert circa 1995)
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Derivative operator: Native space (BV)

Lebesgue space of integrable functions:

LR ={f:R—=R s.t. HfHLlé/R]f(a:)\dx<oo}

Space of signed and bounded Borel measures:

MER) = {w: |wp = sup (w,¢) < oo}
lolloo <1

M(R) as the weak extension of L1 (R): w € L1(R) = ||w|lm = || £z,

Li(R) C M(R); 6(-—xg) ¢ L1(R), while §(- — z9) € M(R) with ||§(- — zo)|[|m =1

m Total-variation regularization
MpR)={f:R—=R s.t. |IDffjm < o0}

Banach space equipped with norm: || fllp = ||IDf||am + | £(0)[?

21

TV representer theorem

Linear measurement operator v : Mp — RM

s—=v(s)={(1,8),...,(vm, )

m General linear inverse problem with TV regularization

P1) arg min (Z|ym— (Vi ) r2+A||Df||M)

Convex loss function: F : RM x RM s R

(P1) arg min (F(y,v(f)) + AlDfllam)

Representer theorem for total variation regularization

The extreme points of (P1’) are necessarily non-uniform splines of the form
K

flx) =01 + Z aru(x — xx) with K < M data-depend knots (xx).
k=1

(Unser-Fageot-ward, SIAM Review, 2017)
22




Synthesis of Sparse process

Take w to be a white noise Lévy noise

m Solution of stochastic differential equation

Ds=w st (¢1,5) =5s(0)=0
Solution: s(z) = D;ll{w}(:c) = /Rg¢l (z,y)w(y)dy = /Om w(T)dr

White noise (innovation) Lévy process

Brownian motion

Gaussian

00 02 04 0.6 08 10

Integrator

Impulsive w(t) t 3(t> Compound Poisson
—_— d7- —_— 0 0

O 00 02 04 06 08 10

SasS (Cauchy) Lévy fiight

0.6 08
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Lévy processes

Constructed by Paul Lévy in the 1930’s

m Non-Gaussian generalization of Wiener process

= Non-stationary
m Self-similar: “1 /w” spectral decay

m Independent increments

ulk] = s(k) — s(k — 1): i.i.d. infinitely divisible (heavy tailed)
Example: compound Poisson process (piecewise-constant, with random jumps)

X| Archetype of a “sparse” random signal

24




Gaussian VS. Sparse

Wavelet analysis

Norbert Wiener Isaac Schoenberg Paul Lévy 25




